Secondary Areosol/PM2.5/ozone

Back to all

  • The Impact of Ethanol Fuel Blends on PM Emissions from a Light-Duty GDI Vehicle


    View Study

    This study explores the influence of ethanol on particulate matter (PM) emissions from gasoline direct injection (GDI) vehicles, a technology introduced to improve fuel economy and lower CO2 emissions, but facing challenges to meet next-generation emissions standards. Because PM formation in GDI engines is sensitive to a number of operating parameters, two engine calibrations are examined to gauge the robustness of the results. As the ethanol level in gasoline increases from 0% to 20%, there is possibly a small (<20%) benefit in PM mass and particle number emissions, but this is within test variability. When the ethanol content increases to >30%, there is a statistically significant 30%–45% reduction in PM mass and number emissions observed for both engine calibrations. Particle size is unaffected by ethanol level. PM composition is primarily elemental carbon; the organic fraction increases from ∼5% for E0 to 15% for E45 fuel. Engine-out hydrocarbon and NOx emissions exhibit 10–20% decreases, consistent with oxygenated fuel additives. These results are discussed in the context of the changing commercial fuel and engine technology landscapes.